
Comparative Study of Parallel Sorting Algorithms

 Pushkar Sharma Akhilesh Pratap Singh Dev Kant
 Dept. of CSE Dept. of CSE Dept. of CSE
 SRMSCET, Unnao SRMSCET, Unnao SRMSCET, Unnao
 Uttar Pradesh, India Uttar Pradesh, India Uttar Pradesh, India
 pushkar1291@gmail.com akhilesh.chauhan88@gmail.com devkantg@gmail.com

Abstract— Sorting is a very common task in computing which
is arranging elements in increasing or decreasing order. It is well
known that the best we can do is sort n data elements in O(n log
n) time. The question then arises, can we do better than this by
employing parallel processing? It turns out that with an increase
in cost we can sort n elements in O(1) time. However for this we
will need a comparatively large number of processors which
would be processing the elements simultaneously. In this paper
we will study and compare the parallel sorting algorithms namely
the Odd Even Transposition Sort, the Enumeration Sort, the
Bitonic Sort and the Parallel Quick Sort.

Keywords— running time; processors; cost, cost optimality; odd
even transposition; enumeration; bitonic; parallel quick

I. INTRODUCTION
Prior methods to sort elements made use of a single

processor which implemented a sequential algorithm. With the
advent of multiprocessor systems there began a rise of parallel
algorithms which performed multiple steps of execution at the
same time to give the results faster than those achieved from
sequential processing. We study the parallel algorithms for
sorting because though it is a common task, its need arises
somewhere or the other in any application or an enterprise. In
this paper we will study the parallel methods of sorting
namely odd even transposition sort, enumeration sort, bitonic
sort and parallel quick sort. After giving the description of
these algorithms we provide the analysis of the same.
Following this we perform a comparison between these
algorithms and finally present the conclusion.

II. TERMS AND DESCRIPTIONS

A. Running Time
It is the time taken by the algorithm to solve a problem on

a parallel computer. If the various processors do not begin and
end their computation simultaneously then the running time is
equal to the time elapsed between the moment the first
processor to begin computing starts and the moment the last
processor to end computing, terminates.

B. Number of Processors
The number of processors a parallel algorithm requires to

solve a problem is an important criteria in evaluating a parallel

algorithm. This is because using a large number of processors
to solve a problem is expensive due to its purchase and
maintenance cost.

C. Cost
Cost of the parallel algorithm is measured by multiplying

the number of processors and the running time.

c(n)=t(n)*p(n)

D. Cost Optimality
A parallel algorithm is cost optimal if the cost of the

parallel algorithm is in the same complexity class as an
optimal sequential algorithm, otherwise, the parallel algorithm
is not cost optimal.

III. PARALLEL ALGORITHMS FOR SORTING
We are now going to study the four widely used parallel

algorithms for sorting.

A. Odd Even Transposition Sort
It works on a processor array model in which processing

elements are organized in a 1 dimensional mesh. Let
A=(a1,a2,....an) be the unsorted sequence. Each of the n
processors use two local variables; a - unique element of A, t -
variable containing value retrieved from neighbouring
processor. The algorithm performs n/2 iterations each with 2
phases. In the odd-even exchange value of a in all odd-
numbered processors (except n-1) is compared with the value
of a stored in successor processor. The values are exchanged
or not such that the lower numbered processor contains the
smaller value. In the even-odd exchange value of a in every
even numbered processor is compared with the value of a in
successor processor. The values are again exchanged or not
such that the lower numbered processor contains the smaller
value. After n/2 iterations the array is completely sorted.

procedure ODD EVEN TRANSPOSITION SORT(1D Mesh
Processor Array)
 Parameter n
 Global i
 Local a- Element to be sorted

 t- Element taken from adjacent processor
 begin

 for i=1 to n/2 do
 for all Pj where 0≤j≤n-1 do in parallel
 if j<n-1 and odd(j) then [Odd even exchange]

 t=successor(a)
 successor(a)=max(a,t)
 a=min(a,t)
 end if
 if even(j) then [Even odd exchange]
 t=successor(a)
 successor(a)=max(a,t)
 a=min(a,t)
 end if

 end for
 end for
end

Indices 0 1 2 3 4 5 6 7
Initially V W U S T R Q P
Odd-even V U < W S < T Q < R P
Even-odd U < V S < W Q < T P < R
Odd-even U S < V Q < W P < T R
Even-odd S < U Q < V P < W R < T
Odd-even S Q < U P < V R < W T
Even-odd Q < S P < U R < V T < W
Odd-even Q P < S R < U T < V W
Even-odd P < Q R < S T < U V < W

Fig. 1. Odd even transposition sort of eight values

 After i iterations of outer for loop, no element can be
farther than n-2i positions away from its final sorted position.
Hence n/2 iterations are sufficient to sort the array giving
t(n)=O(n). The number of processors involved are n giving
p(n)=n. This results in cost, c(n)=O(n2). This results in it not
being a cost optimal algorithm.

B. Enumeration Sort
In this method we try to sort the given array by finding the

number of elements which are smaller than the element under
consideration. Once we obtain this frequency, say p, we place
the element at position p+1 in the sorted list. If there are n
elements we would require n2 CRCW processors. To
determine the position of each element si in the sorted array
we compute ci - the number of elements smaller than si. If two
elements si, sj are equal, then if i>j, ai is taken as larger
number. Each processor P(i,j) compares elements si and sj and
writes either 0/1 in ci. To avoid write conflict, the sum of
values computed by all the processors is written in the
particular memory location. After computing ci, si is placed at
position 1+ci of sorted sequence. Shared memory contains 2
arrays S and C. Array S contains the input sequence; Count ci
is stored in array C. The sorted sequence is returned in S.

procedure ENUMERATION SORT(S)
 Step 1: for i=1 to n do in parallel
 for j=1 to n do in parallel
 if(si>sj) or (si=sj and i>j) then
 P(i,j) writes 1 in ci
 else
 P(i,j) writes 0 in ci

 end if
 end for
 end for
 Step 2: for i=1 to n do in parallel
 P(i,1) stores si in position 1+ci of S
 end for

Fig. 2. Sorting sequence of 4 elements

Each of steps 1 and 2 consists of operations running in
constant time. Thus t(n)=O(1). So, this algorithm sorts n
elements in constant time at the expense of n2 processors. Here
p(n)=n2, giving the cost as c(n)=O(n2). Since there exists a
sequential algorithm for sorting in O(n log n) time this method
of sorting is not cost optimal.

C. Bitonic Sort
First we discuss about a Bitonic sequence and then we

move on to study how to sort such a given sequence.

1) Bitonic Sequence: A sequence is bitonic if
i) There exists an index i, with 0≤i≤n-1 such that a0

through ai is monotonically increasing and ai through an-1 is
monotonically decreasing;

ii). There exists a cyclic shift of indices so that first
condition is satisfied.

2) Compare Exchange Operation: The compare exchange
operation is performed by a comparator which takes in two
numbers and swaps them if necessary so that they are in
proper order as shown in figure.

3) Sorting a Bitonic Sequence (Batcher’s Bitonic Sort): A
single compare exchange step can split a single bitonic
sequence into 2 bitonic sequences. If number of elements, n is
even then n/2 comparators are sufficient to transform the n

6 6,6 6,3 6,5 6,6 2 3

3 3,6 3,3 3,5 3,6 0 5

5 5,6 5,3 5,5 5,6 1 6

6 6,6 6,3 6,5 6,6 3 6

S C S P(1,1) P(1,2) P(1,3) P(1,4)

P(2,1) P(2,2) P(2,3) P(2,4)

P(3,1) P(3,2) P(3,3) P(3,4)

P(4,1) P(4,2) P(4,3) P(4,4)

Initially After
Step 1

After
Step 2

values into 2 bitonic sequences of n/2 values. Comparisons are
performed in such a way that first subsequence contains
min(a0,an/2), min(a1,an/2+1), .. min(an/2-1,an-1) while
second subsequence contains max(), max(), .. max(). No value
in the first subsequence is greater than any value in second
subsequence. This is illustrated in figure. If there are n=2k
elements then k compare exchange steps are sufficient to sort
the sequence.

Fig. 3. Sorting network based on bitonic merge

4) Sorting a general sequence using Sorting network

based on Bitonic Merge (Knuth’s): Assume we have an array
A[0..n-1] with n elements. To sort these elements we would
need n/2 comparators. Comparators and the inputs to them are
shown in figure. The arrows represent the compare exchanges.
If there are n=2k elements, then there will be k stages.Each
stage i will contain i steps for a total of k(k+1)/2 steps. In each
step n/2 comparators will be used. At the end of all the steps
the sequence will be sorted.

A list of n elements to be sorted can be viewed as a set of n
unsorted sequence of length 1 or as n/2 Bitonic sequences of
length 2. Thus, we sort any sequence of elements by
successively merging more and more Bitonic sequences.
Given n=2k unsorted elements, the total comparators used is
(n/2 * Steps) = (2k / 2) * (k(k+1)/2) = 2k-2 k(k+1). The parallel
execution of each level requires constant time, so the total
running time is k(k+1)/2 = log n (log n + 1) / 2 = (log2 n + log
n)/2 = O(log2 n). Thus the running time is O(log2 n).

D. Parallel Quick Sort
Quick Sort works recursively by dividing an unsorted list

of elements into smaller sub lists of elements by partitioning.

In parallel quick sort, a number of identical processors are
used. Elements are stored in an array in global memory. A
stack in global memory stores the indices of sub arrays that are
still unsorted. When a processor is without work, it tries to pop
the indices for an unsorted sub array off the global stack. If
successful, the processor partitions the sub array, based on a
supposed median element, into 2 smaller arrays, containing
elements less than or equal to the supposed median value or
greater than the supposed median respectively. After the
partitioning step, the processor pushes the indices for one sub
array onto the global stack of unsorted sub arrays and repeats
the partitioning process on the other sub array.

Fig. 4. Illustration of parallel quick sort for UMA multiprocessor.

Parallel Quick Sort works in 2 phases.

When the execution begins, there is only a single unsorted
array. Except 1, all processors have to wait till the single
processor partitions the array. This iteration requires n-1 time
units to make n-1 comparisons.

For p≥2, 2 processors can partition the two resulting sub
arrays in (n-1)/2-1= (n-3)/2 time units, making n-3
comparisons. Similarly, for p≥4, third iteration requires time at
least [(n-1)/2-1]/2 -1= (n-7)/4 to make n-7 comparisons. So,
for the first log p iterations, there are at least as many
processors as partitions and time required by this phase is
T1(n,p)=2(n+1)(1- 1/p)-log p

The number of comparisons performed is
C1(n,p)=(n+1)log p - 2(p-1)

In the second phase, there are more sub arrays to be sorted
than processors. All processors are active. If all processors
perform an equal number of comparisons, then time required
is simply the number of comparisons made divided by p.

C2(n,p)=T(n)-C1(n,p)

T2(n,p)=C2(n,p)/p

Hence the total running time of this parallel algorithm is
T1+T2.

IV. COMPARATIVE STUDY OF THE ALGORITHMS
Now that we have studied the various popular parallel

algorithms, we now compare each of them in a tabular format.

 Odd Even
Transposition

Enumerati
on Sort

Bitonic
Sort

Parallel
Quick Sort

Time n 1 √n T1+T2

Processors n n2 n P*

Cost n2 n2 n√n P(T1+T2)*

Cost-
Optimal No No Yes No

*Given in section D.

V. CONCLUSION
In this paper we have only discussed four out of the

parallel sorting algorithms. However we cannot rule out the
existence of many other parallel algorithms which also
execute optimally. We should also bear in mind that to
decrease the running time at the expense of a large number of
processors incurs a greater cost so there is a need for the
algorithm to be cost-optimal. It is thus for the same reason
why cost-optimality is taken into account while analyzing the
algorithms.

ACKNOWLEDGMENT
The authors would like to thank anonymous reviewers for

their helpful comments and suggestions.

REFERENCES
[1] D. Bitton, D. DeWitt, D.K. Hsiao, J. Menon, A Taxonomy of Parallel

Sorting, ACM Computing Surveys, 16,3,pp. 287-318.
[2] Song, Y.D., Shirasi, B. A Parallel Exchange Sort Algorithm. South

Methodist University, IEEE.
[3] Lucas, K.T., Jana, P.K.: An Efficient Parallel Sorting Algorithm on

OTIS-Mesh of Trees. In: IEEE International Advance Computing
Conference, India, pp. 175–180 (2009)

[4] Qureshi K., “A Practical Performance Comparison of Parallel Sorting
Algorithms on Homogeneous Network of Workstations”, Department of
Mathematics and Computer Science, Kuwait University, Kuwait.

[5] Makinde O.E., Adesina O.O., Aremu D.R., Agbo-Ajala O.O.,
“Performance evaluation of sorting techniques”, In press.

[6] Madhavi Desai, Viral Kapadiya, Performance Study of Efficient Quick
Sort and Other Sorting Algorithms for Repeated Data, National
Conference on Recent Trends in Engineering & Technology, 13-14 May
2011.

[7] M. J. Quinn, Parallel Programming in C with MPI and OpenMP, Tata
McGraw Hill Publications, 2003, p. 338

[8] S. S. Skiena, The Algorithm Design Manual, Second Edition, Springer,
2008, p. 129.

[9] Ananth G. ,Anshul G.,George K. & Vipin K.(2007): ,Introduction to
Parallel Computing, 2nd Ed.,Addison-Wesley

[10] M. Banikazemi, V. Moorthy, and D. K. Panda. Efficient Collective
Communication on Heterogeneous Networks of Worksations. In Proc.
Of the 27th International Conference on Parallel Processing, pages 460-
467. IEEE Computer Society Press, 1998.

[11] U. Banerjee. Loop Parallelization. Kulwer Academic Publishers, 1994.
[12] M. Adler, J. W. Byers, and R. M. Karp. Parallel sorting with limited

bandwidth. In Proceedings the Symposium on Parallel Algorithms and
Architectures, July 1995.

[13] P. Brucker. Scheduling Algorithms. Spriger-Verlag, 2004.
[14] M. J. Quinn. Parallel Computing. Theory and Practice. Mc-Graw Hill,

1994.
[15] S. G. Akl. The Design and Analysis of Parallel Algorithms. Prentice

Hall, 1989.
[16] H. S. Stone. Parallel processing with the perfect shuffle. IEEE

Computer, C-20(2), February 1971.

