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Abstract— Sorting is a very common task in computing which 
is arranging elements in increasing or decreasing order. It is well 
known that the best we can do is sort n data elements in O(n log 
n) time. The question then arises, can we do better than this by 
employing parallel processing? It turns out that with an increase 
in cost we can sort n elements in O(1) time. However for this we 
will need a comparatively large number of processors which 
would be processing the elements simultaneously. In this paper 
we will study and compare the parallel sorting algorithms namely 
the Odd Even Transposition Sort, the Enumeration Sort, the 
Bitonic Sort and the Parallel Quick Sort. 
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I.  INTRODUCTION 
Prior methods to sort elements made use of a single 

processor which implemented a sequential algorithm. With the 
advent of multiprocessor systems there began a rise of parallel 
algorithms which performed multiple steps of execution at the 
same time to give the results faster than those achieved from 
sequential processing. We study the parallel algorithms for 
sorting because though it is a common task, its need arises 
somewhere or the other in any application or an enterprise. In 
this paper we will study the parallel methods of sorting 
namely odd even transposition sort, enumeration sort, bitonic 
sort and parallel quick sort. After giving the description of 
these algorithms we provide the analysis of the same. 
Following this we perform a comparison between these 
algorithms and finally present the conclusion. 

II. TERMS AND DESCRIPTIONS 

A. Running Time 
It is the time taken by the algorithm to solve a problem on 

a parallel computer. If the various processors do not begin and 
end their computation simultaneously then the running time is 
equal to the time elapsed between the moment the first 
processor to begin computing starts and the moment the last 
processor to end computing, terminates. 

B. Number of Processors 
The number of processors a parallel algorithm requires to 

solve a problem is an important criteria in evaluating a parallel 

algorithm. This is because using a large number of processors 
to solve a problem is expensive due to its purchase and 
maintenance cost. 

C. Cost 
Cost of the parallel algorithm is measured by multiplying 

the number of processors and the running time. 

c(n)=t(n)*p(n) 

D. Cost Optimality 
A parallel algorithm is cost optimal if the  cost of the 

parallel algorithm is in the same complexity class as an 
optimal sequential algorithm, otherwise, the parallel algorithm 
is not cost optimal. 

III. PARALLEL ALGORITHMS FOR SORTING 
We are now going to study the four widely used parallel 

algorithms for sorting. 

A. Odd Even Transposition Sort 
It works on a processor array model in which processing 

elements are organized in a 1 dimensional mesh. Let 
A=(a1,a2,....an) be the unsorted sequence. Each of the n 
processors use two local variables; a - unique element of A, t - 
variable containing value retrieved from neighbouring 
processor. The algorithm performs n/2 iterations each with 2 
phases. In the odd-even exchange value of a in all odd-
numbered processors (except n-1) is compared with the value 
of a stored in successor processor. The values are exchanged 
or not such that the lower numbered processor contains the 
smaller value. In the even-odd exchange value of a in every 
even numbered processor is compared with the value of a in 
successor processor. The values are again exchanged or not 
such that the lower numbered processor contains the smaller 
value. After n/2 iterations the array is completely sorted. 

procedure ODD EVEN TRANSPOSITION SORT(1D Mesh 
Processor Array) 
     Parameter n 
     Global i 
     Local  a- Element to be sorted 

  t- Element taken from adjacent processor 
     begin 



          for i=1 to n/2 do 
               for all Pj where 0≤j≤n-1 do in parallel 
                    if j<n-1 and odd(j) then [Odd even exchange] 

               t=successor(a) 
               successor(a)=max(a,t) 
               a=min(a,t) 
          end if 
          if even(j) then [Even odd exchange] 
               t=successor(a) 
               successor(a)=max(a,t) 
               a=min(a,t) 
          end if 

          end for 
     end for 
end 
 
Indices 0  1  2  3  4  5  6  7 
Initially V  W  U  S  T  R  Q  P 
Odd-even V  U < W  S < T  Q < R  P 
Even-odd U < V  S < W  Q < T  P < R 
Odd-even U  S < V  Q < W  P < T  R 
Even-odd S < U  Q < V  P < W  R < T 
Odd-even S  Q < U  P < V  R < W  T 
Even-odd Q < S  P < U  R < V  T < W 
Odd-even Q  P < S  R < U  T < V  W 
Even-odd P < Q  R < S  T < U  V < W 

Fig. 1. Odd even transposition sort of eight values 

 
 After i iterations of outer for loop, no element can be 
farther than n-2i positions away from its final sorted position. 
Hence n/2 iterations are sufficient to sort the array giving 
t(n)=O(n). The number of processors involved are n giving 
p(n)=n. This results in cost, c(n)=O(n2). This results in it not 
being a cost optimal algorithm. 

B. Enumeration Sort 
In this method we try to sort the given array by finding the 

number of elements which are smaller than the element under 
consideration. Once we obtain this frequency, say p, we place 
the element at position p+1 in the sorted list. If there are n 
elements we would require n2 CRCW processors. To 
determine the position of each element si in the sorted array 
we compute ci - the number of elements smaller than si. If two 
elements si, sj are equal, then if i>j, ai is taken as larger 
number. Each processor P(i,j) compares elements si and sj and 
writes either 0/1 in ci. To avoid write conflict, the sum of 
values computed by all the processors is written in the 
particular memory location. After computing ci, si is placed at 
position 1+ci of sorted sequence. Shared memory contains 2 
arrays S and C. Array S contains the input sequence; Count ci 
is stored in array C. The sorted sequence is returned in S. 

procedure ENUMERATION SORT(S) 
     Step 1: for i=1 to n do in parallel 
                    for j=1 to n do in parallel 
                         if(si>sj) or (si=sj and i>j) then 
                              P(i,j) writes 1 in ci 
                         else 
                              P(i,j) writes 0 in ci 

                         end if 
                    end for 
               end for 
     Step 2: for i=1 to n do in parallel 
                    P(i,1) stores si in position 1+ci of S 
               end for 

Fig. 2. Sorting sequence of 4 elements 

 

Each of steps 1 and 2 consists of operations running in 
constant time. Thus t(n)=O(1). So, this algorithm sorts n 
elements in constant time at the expense of n2 processors. Here 
p(n)=n2, giving the cost as c(n)=O(n2). Since there exists a 
sequential algorithm for sorting in O(n log n) time this method 
of sorting is not cost optimal. 

C. Bitonic Sort 
First we discuss about a Bitonic sequence and then we 

move on to study how to sort such a given sequence. 

1) Bitonic Sequence: A sequence is bitonic if  
i) There exists an index i, with 0≤i≤n-1 such that a0 

through ai is monotonically increasing and ai through an-1 is 
monotonically decreasing;  

ii). There exists a cyclic shift of indices so that first 
condition is satisfied. 

2) Compare Exchange Operation: The compare exchange 
operation is performed by a comparator which takes in two 
numbers and swaps them if necessary so that they are in 
proper order as shown in figure. 

3) Sorting a Bitonic Sequence (Batcher’s Bitonic Sort): A 
single compare exchange step can split a single bitonic 
sequence into 2 bitonic sequences. If number of elements, n is 
even then n/2 comparators are sufficient to transform the n 
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values into 2 bitonic sequences of n/2 values. Comparisons are 
performed in such a way that first subsequence contains 
min(a0,an/2), min(a1,an/2+1), .. min(an/2-1,an-1) while 
second subsequence contains max(), max(), .. max(). No value 
in the first subsequence is greater than any value in second 
subsequence. This is illustrated in figure. If there are n=2k 
elements then k compare exchange steps are sufficient to sort 
the sequence. 

 
Fig. 3. Sorting network based on bitonic merge 

 
4) Sorting a general sequence using Sorting network 

based on Bitonic Merge (Knuth’s): Assume we have an array 
A[0..n-1] with n elements. To sort these elements we would 
need n/2 comparators. Comparators and the inputs to them are 
shown in figure. The arrows represent the compare exchanges. 
If there are n=2k elements, then there will be k stages.Each 
stage i will contain i steps for a total of k(k+1)/2 steps. In each 
step n/2 comparators will be used. At the end of all the steps 
the sequence will be sorted. 
 

A list of n elements to be sorted can be viewed as a set of n 
unsorted sequence of length 1 or as n/2 Bitonic sequences of 
length 2. Thus, we sort any sequence of elements by 
successively merging more and more Bitonic sequences. 
Given n=2k unsorted elements, the total comparators used is 
(n/2 * Steps) = (2k / 2) * (k(k+1)/2) = 2k-2 k(k+1). The parallel 
execution of each level requires constant time, so the total 
running time is k(k+1)/2 = log n (log n + 1) / 2 = (log2 n + log 
n)/2 = O(log2 n). Thus the running time is O(log2 n). 

D. Parallel Quick Sort 
Quick Sort works recursively by dividing an unsorted list 

of elements into smaller sub lists of elements by partitioning. 

In parallel quick sort, a number of identical processors are 
used. Elements are stored in an array in global memory. A 
stack in global memory stores the indices of sub arrays that are 
still unsorted. When a processor is without work, it tries to pop 
the indices for an unsorted sub array off the global stack. If 
successful, the processor partitions the sub array, based on a 
supposed median element, into 2 smaller arrays, containing 
elements less than or equal to the supposed median value or 
greater than the supposed median respectively. After the 
partitioning step, the processor pushes the indices for one sub 
array onto the global stack of unsorted sub arrays and repeats 
the partitioning process on the other sub array. 

Fig. 4. Illustration of parallel quick sort for UMA multiprocessor. 

 

Parallel Quick Sort works in 2 phases.  

When the execution begins, there is only a single unsorted 
array. Except 1, all processors have to wait till the single 
processor partitions the array. This iteration requires n-1 time 
units to make n-1 comparisons. 

For p≥2, 2 processors can partition the two resulting sub 
arrays in (n-1)/2-1= (n-3)/2 time units, making n-3 
comparisons. Similarly, for p≥4, third iteration requires time at 
least [(n-1)/2-1]/2 -1= (n-7)/4 to make n-7 comparisons. So, 
for the first log p iterations, there are at least as many 
processors as partitions and time required by this phase is 
T1(n,p)=2(n+1)(1- 1/p)-log p 

The number of comparisons performed is 
C1(n,p)=(n+1)log p - 2(p-1) 

In the second phase, there are more sub arrays to be sorted 
than processors. All processors are active. If all processors 
perform an equal number of comparisons, then time required 
is simply the number of comparisons made divided by p. 

C2(n,p)=T(n)-C1(n,p) 

T2(n,p)=C2(n,p)/p 

Hence the total running time of this parallel algorithm is 
T1+T2. 

 



IV. COMPARATIVE STUDY OF THE ALGORITHMS 
Now that we have studied the various popular parallel 

algorithms, we now compare each of them in a tabular format. 

 Odd Even 
Transposition 

Enumerati
on Sort 

Bitonic 
Sort 

Parallel 
Quick Sort 

Time n 1 √n T1+T2 

Processors n n2 n P* 

Cost n2 n2 n√n P(T1+T2)* 

Cost-
Optimal No No Yes No 

*Given in section D. 

V. CONCLUSION 
In this paper we have only discussed four out of the 

parallel sorting algorithms. However we cannot rule out the 
existence of many other parallel algorithms which also 
execute optimally. We should also bear in mind that to 
decrease the running time at the expense of a large number of 
processors incurs a greater cost so there is a need for the 
algorithm to be cost-optimal. It is thus for the same reason 
why cost-optimality is taken into account while analyzing the 
algorithms. 
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